

Mechanical & Thermal sub-team

MIST

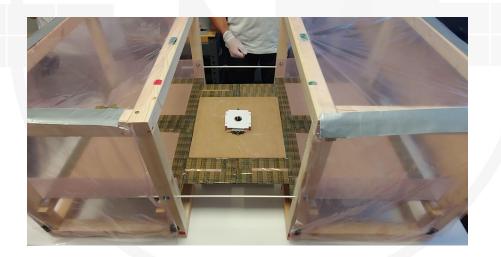
Mechanical: Erik Hedenström, Mandy Ma, Tindra Hellsing,

Marios Argyrou, Wanes Kalayejian, et al.

Thermal: Kjell Gordon

Content

- 1. Goals of the Semester
- 2. Satellite integration
- 3. Leak test
- 4. Thermal testing
- 5. Other tests


Goals of the semester

- Integrate the satellite
- Leak test of NanoProp
- Communication- and deployment test
- Thermal tests

- Integrate the satellite
- Leak test of NanoProp
- Communication- and deployment test
- Thermal tests

Reasons:

- Problems
- In practice 3 members (instead of 8)

Satellite integration

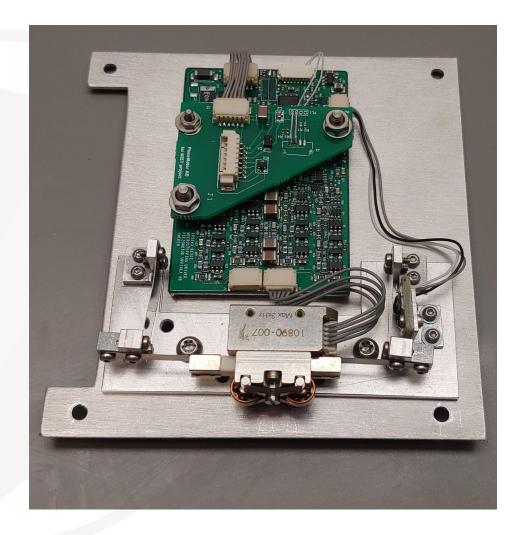
Status:

Not integrated

Reasons:

- Too many problems
 - Bugs in the OBCSW (AntS), ADCS (SIL) solved (FT and ADCS have some remaining tests to do)
 - Problems with experiments
 - LEGS (screws, sensor calibration) solved
 - CUBES-1, CUBES-2 (VBAT protection, software, nonconforming materials) ongoing work
 - NanoProp + NanoProp Helper Board (VBAT protection, leak test, thrusters) ongoing work
 - SiC (VBAT protection, broken gold wire?) ongoing work
 - SEUD not delivered ongoing work

Satellite integration - PiezoLEGS



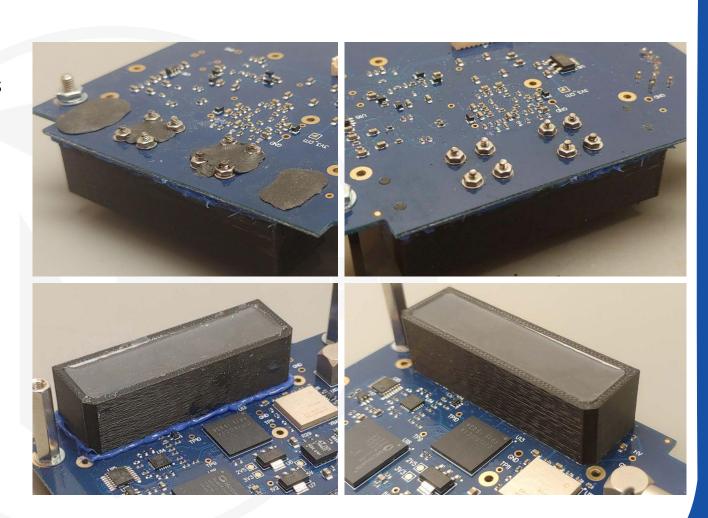
Accomplishments:

- New holes for mounting the motor board
- Applied Loctite and tightened 30/30 screws
- Re-calibration of optical sensor

Remaining work:

Add some Epoxy

Satellite integration - CUBES



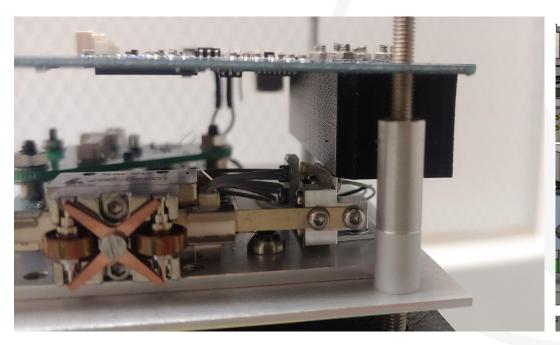
Accomplishments:

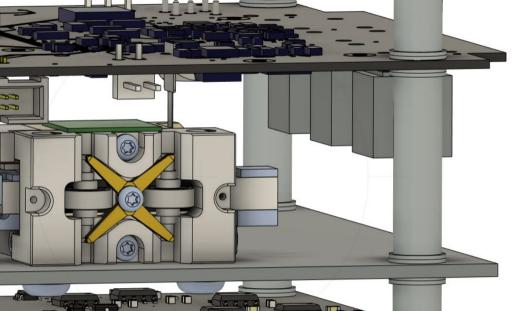
- Some of the non-conforming materials have been removed
- Plan for outgassing test of RTV and 3D-printed mould

Remaining work:

- Perform outgassing test
- Add some Epoxy

Satellite integration - Bottom stack problem

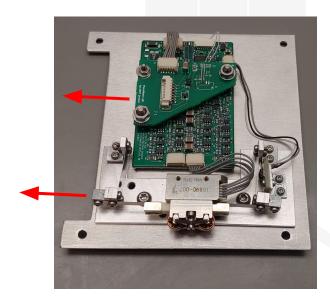


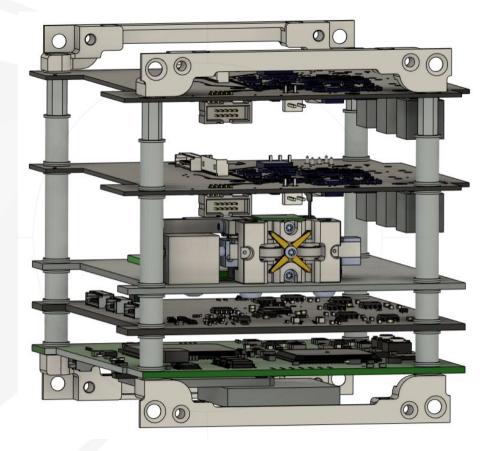

Problem:

• PiezoLEGS and CUBES cannot be mounted as close together as originally planned

Cause:

• Final design of PiezoLEGS and CUBES different from CAD-drawings - both are larger!




Satellite integration - Bottom stack problem

Solutions:

- a) Adjust distances between experiments:
 - CUBES-2 LEGS: +7 mm
 - o CUBES-1 CUBES-2: -3 mm
 - o SiC SEUD: -4 mm
- b) Manufacture new aluminium mounting board for LEGS

Satellite integration

Satellite integration - planning and documentation

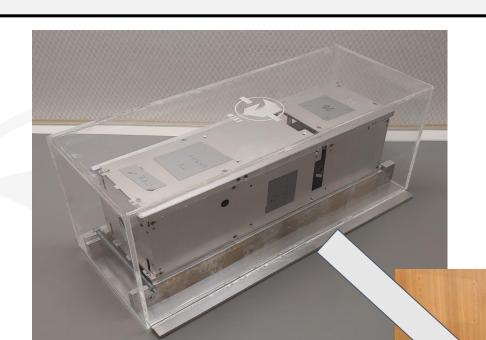
Some aspects:

- New screws grade 5 titanium
- Vibration test
 - Test the satellite twice: first time with mock-up solar panels
 - Makes it possible to inspect the inside of the satellite
 - Makes it easier to disassemble the satellite if needed
- Epoxy/Loctite
 - Loctite on <u>all</u> screws, Epoxy on <u>most</u> connectors (+ SD card?)

Biggest challenge: Lack of knowledge about details within the project

Satellite integration

Leak Test


Purpose:

 To ensure no leakage in propulsion system under vacuum environment

Accomplishments:

- Created a vacuum tank 3D model
- Manufactured leak test equipment
 - Aluminum satellite holder by manual mill
 - Acrylic satellite cover by laser cut

Aluminum satellite holder by manual mill

Purpose:

- To hold satellite
 - during transportation and
 - inside vacuum tank throughout leak test

Structure:

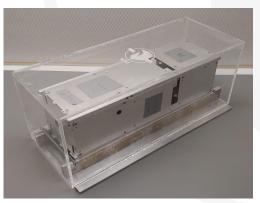
- 2 side parts
- 1 base part
- 1 threaded rod
- 2 nuts
- 6 screws

Machining processes:

• Milling, Drilling, Tapping

Acrylic satellite cover by laser cut

Purpose:


- To cover satellite during transportation
- Prevent contamination

Structure:

- 5 acrylics plates
- Loctite super glue

Manufacturing process:

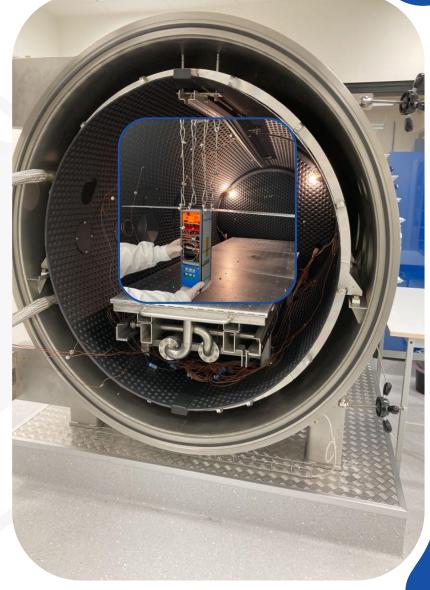
- Laser cutting
- Glueing

Thermal Testing

TBT: Thermal Balance Test

- Apply thermal gradients
- Measure temperature difference over interfaces

TVCT: Thermal Vacuum Cycling Test


Equipment verification at thermal extremes

Ongoing work:

- Test procedure document
 - New revision
- Nanoprop automatic heating scope definition
- Old heater adhesive testing
 - No changes
- Thermal simulation corrections
 - Heater placements and size
- Heater functionality control
 - Heater loosening safety
 - Documentation

MIST. KTH, Stockholm, Sweden

MIST

Other tests

Communication and Deployment test

Accomplishments:

- Successful rehearsal during the summer
- Some minor problems, most have been remedied Remaining (mechanical) work (~30h):
 - Reviewing and revising instructions for the test
 - Buy cameras
 - Some remaining work on the transportation box

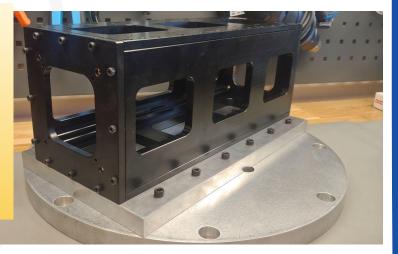

Vibration test

Accomplishments:

- New adapter manufactured during the summer
- New screws for adapter and pod

Remaining work (~120h):

- Insert helicoils into vibration adapter
- Write new instructions for the vibration test
- Perform a new rehearsal


Accomplishments:

We have a plan!

Remaining work (~20h):

- Minor modifications of transportation box
- Visit test facility and write down step-by-step instructions

